Gas-filled Cylindrical Liner
Experiments on MAGPIE



Outline of experiment
\/

Laser probing in
Optical emission out to spectrometer

System is diagnosed ‘end-on’ along the liner axis

Glass windows -355nm (UV) and 532nm interferometry and
Schlieren imaging

- Optical streak photography

- Optical spectroscopy

Laser probing out
Optical emission out to streak camera

Cathode

Electrical contacts to

load hardware Liner

14mm

Conducting silver paint
Epoxy



Outline of experiment

1.4 MA, 250 ns current pulse is delivered to a gas-filled cylindrical liner

Aluminium Liners « Multiple shocks driven into gas from inner liner surface

6 mm diameter, 80 um wall
Aspect Ratio =40

14 mm long

Al 6061
6, =V(2p/

* Shocks are radiative — evidence for precursor

* No bulk motion of the liner wall

i) = 60um

* No plasma seen on outer liner surface

Argon (A=40,Z=18) 0.7mBar -- 8mBar
(1.8el6atoms/cc) (2e17atoms/cc)
Xenon (A=131, Z=54) -- 1.1mBar 2.5mBar
(2.7el6atoms/cc) (6el6atoms/cc)
Nitrogen (A=14, Z=7) - - 15mBar (N,)
(7.3e17 atoms/cc)




Results (i) Shock
dynamics in gas-filled

cylindrical aluminium
liners




Dynamics from optical streak camera

15t shock - almost linear trajectory. V = 20 km/s.
Blow-off from inner surface of liner is pushing
into cold, neutral argon gas, ionising and heating
it.
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2"d shock is launched into heated, ionised

argon. Accelerating trajectory may
indicate presence of current and B field

inside the liner.
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Shock trajectories

1st shock trajectory consistent with analytic solution (red line) for converging shocks caused by a
cylindrical piston motion (Guderley, 1942):

Slight acceleration due to converging geometry.
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Shock trajectories

Second shock shows more acceleration; driving force could be magnetic field.
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Estimate of current in gas

Mass is assumed to occupy a thin shell and is estimated from interferometry line-outs
Then, use F = Magnetic Pressure x Area enclosing shell = ma

Assuming electron density is due to singly ionised argon atoms, current required for observed
acceleration at 253ns is approx. 50 kA




15t shock interferometry (Ar)

There are two interferometry frames per shot. One 532nm (green images) and one 355nm

(orange images). The inter-frame time is 28ns on all shots.
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Initial 6mm diameter (white)

<

Shadowgraphy effect
shows up shock structure

Data from 8mBar argon shot. s0812 11

Shock moving
radially in

Unshocked
material

Shocked
material

Changes in electron and neutral atom line
density shift the interference fringes (in
opposite directions)

532nm probe is 10X more sensitive to n,

355nm probe is 5X more sensitive to n,




15t shock interferometry (Ar)

Electron density map from 532nm Line-outs from 532nm electron density map
frame and position of line-outs

N
17

Electron Density [x10 e'cm'3]

Distance /mm

=2el7 cm3

- matches peak electron density

Initial n

atom

Position of zero fringe shift is not
known (1 fringe shift gives n, = 6e16
cm3 for 532nm, 14mm length)

Radius [mm]

Curved electron density profile in unshocked region — radiative precursor
Consistent with condition for radiative effects GTS4 > poug /2




15t shock interferometry (Ar)

Azimuthally-averaged radial electron density profiles
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- Axial density has been set to zero. Absolute n, changes for each lineout remain correct

- Precursor is seen
- Peak electron density increases as shock propagates



Optical spectroscopy

End-on view of liner is imaged onto a 7-fibre bundle and fed to an Andor % m spectrometer

Fibre bundle

Optical emission out

Axial window on chamber lid

300 lines/mm grating used to give broad range of wavelengths
Corresponding 1nm spectral resolution

Spatial resolution of 800um from opening angle of collecting lens



Optical spectroscopy

Argon fill (8mBar. S0812 11)

Fibres 3, 4 and 5 should collect light
15t shock, yet to reach axis from inside the radius of the shock

Fiber position
NOULhs wN =

450 500 550
Wavelength [nm]

Position of fibres

Majority of lines appear to be Arll
Could be seeing preheating of the unshocked region by radiation from the shock front
Little evidence for Al emission —it is cold and/or there is not much of it

Theoretical post-shock temperature of 2eV given by kT = 2(y-1) . Am,
agrees with spectroscopic data we (y+1)° (Z+1)

(P. Drake)

Same general picture when looking at 1t shock in xenon
Later time spectroscopy (of second shock) shows a lot of continuum emission



Schlieren imaging

Schlieren technique is good for imaging the sharp density gradients that occur at shock fronts

15t shock about to reach the Material already on
axis not imaged well for the axis is not well imaged
lower initial gas density in

this shot

8mBar argon s0818 11 1.1mBar xenon s0823 11

15t shock imaged clearly in 2"9 shock is very uniform 2" shock
8mBar Ar 34 shock? (not seen on streak)




Changing the mass density of the gas

Decreased the mass density of the gas inside to increases the speed of the shocks - more likely
to see radiative effects.

BUT — Shock speed not a strong function of gas density.

System gets difficult to diagnose at low densities as there is less emission and the sensitivity of
the interferometer and Schlieren systems is reduced.
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Shock speed hardly changes when mass
density is halved.



Introduce axial magnetic field?

Ram pressure of shock given by ])ram — pv2

For 15t Ar shock P..._ = 100 Bar

ram

For 2"4 Ar shock P, = 1.6 kBar

Magnetic pressure given by Pmag = —

ram

For P,y =P

B=5T (1% shock)

B=20T (2" shock) Permanent

Liner magnets

B = 1 T possible with permanent magnets

Cross-section



Results (ii)
Shock timing and
current profile



Timing of 15t

shock

Current (MA)
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Timing of 15t shock

Shock breakout time (ns)

Shock Timing vs. Average dl/dt
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Timing of 15t shock

Current integral:

J:jt Pdi=[" o dt

0 0y

ForAl:  J’" =0.32x10"A’sm™
Jret =0.40x10"7 A’sm™
Jona =0.59 x107 A’sm™

JP" =1.09x10"7 A’sm™

vap or

(Knoepfel, Wiley)
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Timing of 2"% shock

Shock Timing vs. Average dl/dt
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Timing of 2nd shock

Current integral for 2" shock

J(tshock) = JAI

melt

320

[

N N w
(o)} (03] o
o o o
| | |

240

220

Shock breakout time (ns)

200 — ;—E—q

I
I

180 3 :
1 I

I

I

160 1 I 1 I 1 I 1 I 1 1 I 1 I Ll l Ll I
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

aluminium
/J

Normalised current integral [assuming uniform current density] (J(t, _)/J__ ")



Results (iii)
Observations of
outer liner surface



Outline of experiment

1.4 MA, 250 ns current pulse is delivered to a cylindrical liner

Aluminium Liners

6 mm diameter, 80 um wall
Al 6061

Homemade Aluminium
Liners

10/14 mm diameter, 20 um
wall
Al kitchen foil

Nickel Liners

3.6 mm diameter, 50 um wall
Wiu) = 90um

Electrical contacts to
load hardware

14mm

Conducting silver paint

Epoxy




Imaging the

XUV pinhole images

20um wall
homemade Al liners

Start-up at both ends

Striation often seen on
homemade liners

outside surface of liners
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Imaging the outside surface of liners

XUV pinhole images

50um wall, 3.6mm OD Ni liners
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Imaging the outside surface of liners

s1124_10

20mm

118ns 148ns  178ns 206ns | 296ns
s1105_10

170ns 200ns 230ns

No anode-cathode asymmetry

Typically Ni liners light up 30ns earlier than Al
liners

10mm

Correlated azimuthal striations seen on Ni
liners at late times

No XUV emission from 80um wall Al liners 244ns 274ns
s0603_11




Imaging the outside surface of liners

Laser probing of 20um wall aluminium liners

14mm diameter 10mm diameter
Shadowgraphy 167ns Schlieren 298ns

Seam position

|~ 170um
A=110um

S0819_10
s0812_10

Small instabilities seen on surface of 20um aluminium liners

No plasma seen on outside of 80um aluminium liners



Imaging the outside surface of liners

Shadowgraphy of 50um wall nickel liners

s0603_11 s0602_11

169ns 227ns

Amplitude of instabilities grows at 10-15 km/s | = 300-400 um
Amplitude = 0.7-1.0 mm

Expansion velocity corresponds to ZT, = 2-4 eV



Liner parameters

Ni 50um wall, Al 20um wall, Al 80um wall,
3.6mm OD 14mm OD 6mm OD

Resistivity (nQm) 69.3 28.2 28.2

Skin depth (um) 90 60 60

Cross section (mm?) 0.56 0.88 1.5

Mass per unit length (gm?t) 5 2.4 4

Melting point (K) 1728 933 933

Boiling point (K) 3186 2792 2792

Heat capacity (J molt K1) 26 24 24

Peak B field (T) 155 40 93




